Florida Electric Cooperatives Association The Power of Human Connections®

Getting to Know the IEC 61850 Family

Michael Thesing

Patterson & Dewar Engineers, Inc.

Florida Electric Cooperatives Association - June 9, 2015

What I hope you get out of this talk

For the technologies defined by IEC 61850:

A basic understanding of what they are

How all of the pieces work together

Potential applications in your system

Why a new protocol? What problem was it designed to solve?

Handle <u>all</u> substation data and communications

Data

- Replace IED-specific point lists with standard data definitions
- Exchange "real time" data between IEDs
- Movement of the Data
 - Replace terminal-to-terminal wiring and serial comms with a high speed communication network

3

- Automation
 - Provide a "platform"
- Ancillary services
 - Configuration, testing, protection, control, environmental, etc.

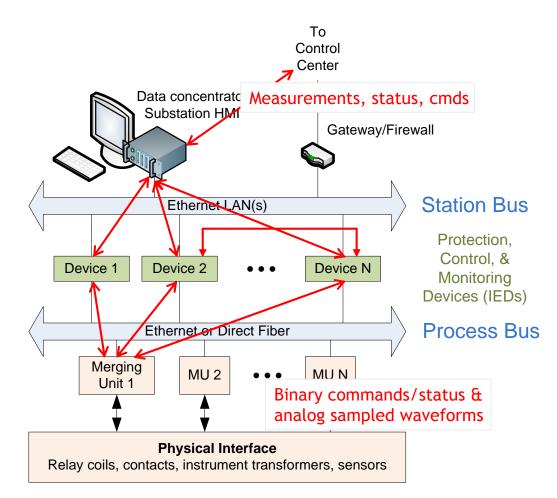
In essence: Use substation digital technology to the max!

How this talk will go

- All the features of the standard big picture
- Data transfer
- What does the data look like?
- Configuration
- Network communication essentials
- Process Bus alternatives
- GOOSE Demo

Much more than a "Protocol"

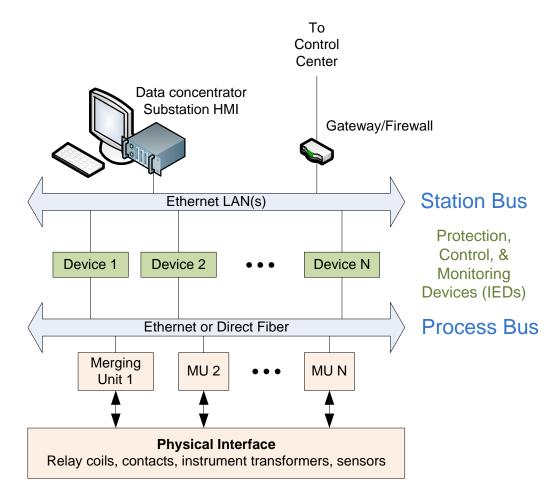
Big Picture of this "family of standards"


Architecture

Station Bus

Relays, meters, data concentrators, RTUs, etc.

Process Bus


Replace wiring with digitized, high speed data

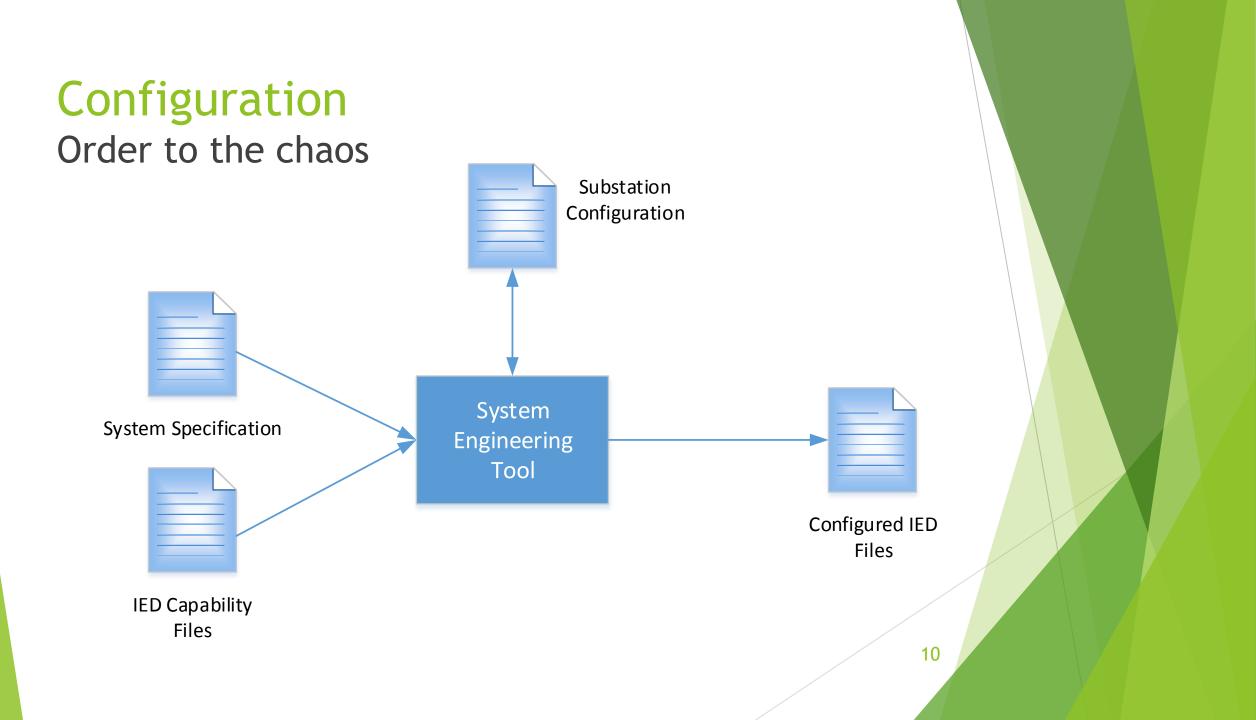
Architecture

SCADA

- Instantaneous messaging
 - "Digital wiring"
- Configuration
 - Reduce vendor-specifics
- Other network services
 - Configuration
 - Security
 - ► File transfer
- Substation "hardening"

Multiple "protocols within the standard"

- Uses MMS (Manufacturing Message Specification) for communication services
- Defines many data classes for scores of applications
- Uses Ethernet extensively and exclusively (ISO and IEEE standards)
- Merging Units per IEC 61869-9
- Configuration using XML


Object-oriented data model

DNP3 Points List (example: analog points)

Description	Index	Hex Index	Default Event Class	Division Scale Factor	Units	Deadband
A Phase Primary Current Magnitude	00	00	2	10	Amps	100
B Phase Primary Current Magnitude	01	01	2	10	Amps	100
C Phase Primary Current Magnitude	02	02	2	10	Amps	100
310 Primary Current Magnitude	03	03	2	10	Amps	100
A Phase Primary Voltage Magnitude	04	04	2	1	Volts	1000
B Phase Primary Voltage Magnitude	05	05	2	1	Volts	1000
C Phase Primary Voltage Magnitude	06	06	2	1	Volts	1000

Objects

Expression	Туре	Value
🖃 🙆 FM_INST_P_WATTS	MV	
< instMag	REAL	0
🔷 mag	REAL	0
🔷 range	RANGE_T	normal
🖃 🌵 q	quality_t	
validity	VALIDITY_T	good
🗉 < detailQual	detailQual_t	
ø source	SOURCE_T	process
< test	BOOL	FALSE
operatorBlocked	BOOL	FALSE
🗉 < t	timeStamp_t	
< db	REAL	100
zeroDb	REAL	2

Conformance Testing (screenshot from wikipedia.org)

Standard Documents [edit]

IEC 61850 consists of the following parts detailed in separate IEC 61850 standard documents

- IEC 61850-1: Introduction and overview How Can all vendors possibly read all of these standards the same?
 IEC 61850-2: Glossary
- IEp618 Requires autests system to simulate the "environment" of the device
- IEC 61850-4: System and project management Ed.2
 IEC 61850-5: Contraction requirements for functions and gevice in fod on "how we did it"
- IEC 618 PLY: FINFELME OF THE PARTY OF THE PA

- IEC 61850-7-3: Common Data Classes Ed.2
- IEC 61850-7-4: Compatible logical node classes and data classes Ed.2
- IEC 61850-7-10: Communication networks and systems in power utility automation Requirements for web-based and structured access to the IEC 61850 information models [Approved new work]
- IEC 61850-8: Specific communication service mapping (SCSM)
 - IEC 61850-8-1: Mappings to MMS (ISO/IEC9506-1 and ISO/IEC 9506-2) Ed.2
- IEC 61850-9: Specific communication service mapping (SCSM)
 - IEC 61850-9-1: Sampled values over serial unidirectional multidrop point to point link
 - IEC 61850-9-2: Sampled values over ISO/IEC 8802-3 Ed.2
- IEC 61850-10-: Conformance testing

Environmental Requirement IEC61850-3

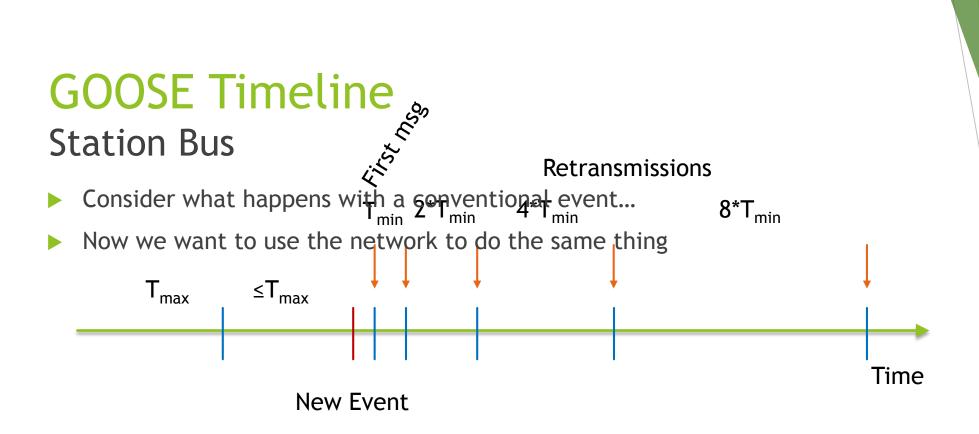
- Temperature range
 - Operating @ -40°C to 85°C (highest class: Cx)
- EMC (Electromagnetic Compatibility)
 - ▶ IEC 61000-4-X and 60255-5 covering, for example:
 - Electrostatic immunity
 - RF and magnetic fields
 - ► Fast Transients
 - Surges and other voltage anomolies
- Anti-shock and anti-vibration
 - ► 50G AS
 - 5-500 MHz AV

Related Standards (screenshot from wikipedia.org)

- ▶ IEC 61850-7-410 Hydroelectric Power Plants Communication for monitoring and control.
- ▶ IEC 61850-7-420 Communications systems for **Distributed Energy Resources** (DER) Logical nodes
- IEC 61850-7-500 Use of logical nodes to model functions of a substation Automation system. [Approved New Work]
- IEC 61850-7-510 Use of logical nodes to model functions of a Hydro Power Plant. [Approved New Work]
- ▶ IEC 61850-90-1 Use of IEC 61850 for the communication between substations [Published]
- IEC 61850-90-2 Use of IEC 61850 for the communication between control centres and substations [Approved New Work]
- ▶ IEC 61850-90-3 Using IEC 61850 for Condition Monitoring [Approved New Work]
- ▶ IEC 61850-90-4 IEC 61850 Network Engineering Guidelines [Approved New Work]
- IEC 61850-90-5 Use of IEC 61850 to transmit synchrophasor information according to IEEE C37.118 [Approved New Work]
- IEC 61850-90-6 Use of IEC 61850 for Distribution Feeder Automation System [Approved New Work]
- ▶ IEC 61850-90-7 Object Models for Photovoltaic, Storage and other DER inverters [Approved New Work]
- IEC 61850-90-8 Object Models for Electrical Transportation (E-Mobility [Approved New Work])
- ▶ IEC 61850-90-9 Object Models for Batteries [Approved New Work]
- ▶ IEC 61850-90-10 Object Models for Scheduling [Approved New Work]
- IEC 61850-80-1 Guideline to exchanging information from a CDC-based data model using IEC 60870-5-101 or IEC 60870-5-104 [Published]

13

- ▶ IEC 61400-25 Application of the IEC 61850 methodology for **Wind turbines**
 - More Wind turbine standards...
- IEC 62271-3 Communications for monitoring and control of high-voltage switchgear (published)


How is data moved from point to point?

MMS (Manufacturing Message Specification) Station Bus

- Originated in the 1980s standardized by ISO/IEC
- Foundation for IEC 61850 process data and supervisory control
- Provides:
 - Vendor independence
 - Network services (client/server, events, file transfer, etc.)
 - Standard data definitions, structure, and encoding rules
 - Security mechanisms
- A general standard designed to be used for specific applications (like 61850)

GOOSE (Generic Object Oriented Substation Events) Station Bus

- Status or analog values (measured values) transmitted on the network
 - Grouped into "data sets"
- Directly embedded in Ethernet packets
 - Multicast or broadcast addresses
- Uses a "publisher/subscriber" paradigm
- Takes advantage of VLANs (virtual LANs) to limit broadcast domain
- Ultra-fast transmit and retransmission for reliable transfer of the message

- Faster than a wired connection
 - Traditional: Includes time for output relay (8-10ms), input filtering (5-10ms), I/O signal processing(1-50ms)
 - GOOSE: Processor to processor thru a communication stack and network switch

What does the data look like?

Objects and nodes and attributes, oh my!

IEC 61850

Data model

 Point numbers/names replaced with standard naming convention

 Very structured hierarchy, i.e. classes, std. types

LAN

 Data mapped to network services - MMS and Ethernet

gica	al D	evice (Relay1)	Other Logical Devices
Lo	gic	al Node (XCBR1)	
	Da	ata Object (Pos)	
		Data Attribute (stVal) Values: Int-state Off On bad-state	
		Other Data Attributes	
	(Other Data Objects	
	Othe	er Logical Nodes	

Relay1/XCBR1.Pos.stVal

- Terminology
 - Physical Device = the actual computer/box that has a network address
 - Logical Device = collections of logical nodes in one IED
 - Logical Node = defined functions, e.g. XCBR; defined in the standard
 - Data Object = encapsulate properties of the logical nodes
 - Data Attribute = structured and defined data

Another Data Model Example

Logical Node = MMXU1	• MMXU1
Polyphase measurement unit	• Volts
Data Object = Amps	 Amps
Phase current	∘ phsA
Sub-Data Object = phsC	∘ phsB
Phase C	 phsC
Attribute = cVal	o C
Complex value	
cVal is a vector_t type	
mag, ang data values	

Relay1/MMXU1.Amps.phsC.cVal.mag

o cVal

o mag

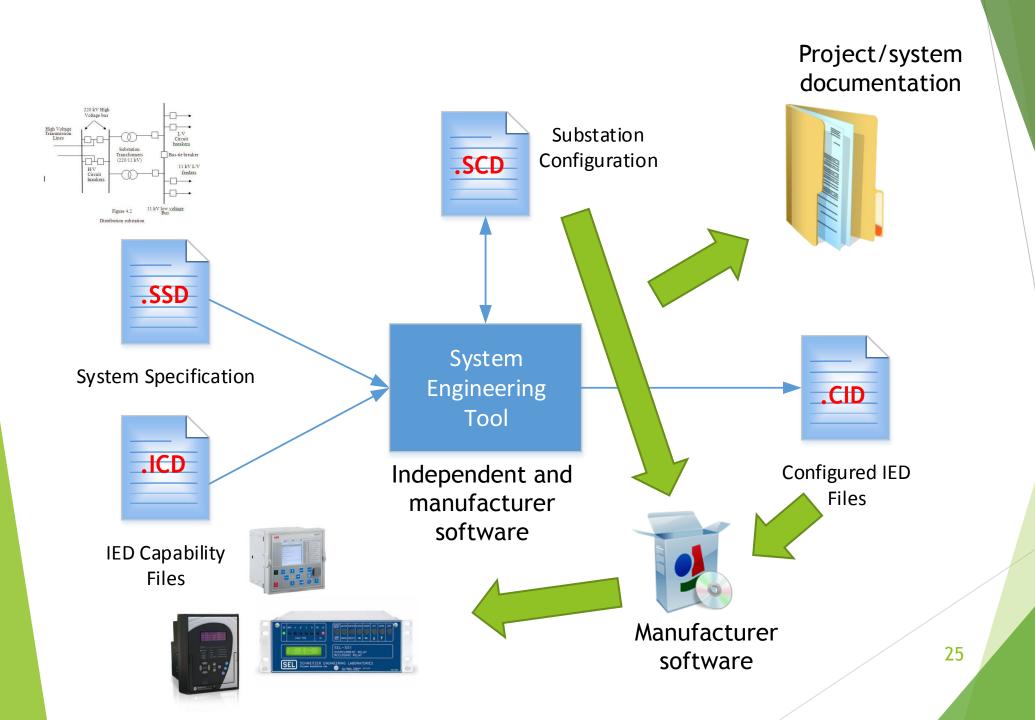
o ang

Standardized logical nodes (as of 2012)

LN Group	First Letter Designator	Number of LNs Defined
System	L	9
Automatic Control	А	5
Control	С	6
Decentralized Energy Resources	D	32
Functional Blocks	F	19
Generic	G	4
Hydro Power	н	19
Interfacing and Archiving	1	7
Mechanical and non-electric primary equipment	К	10
Metering and measurement	М	22
Protection functions	Р	32
Power quality events	Q	6
Protection related functions	R	12
Supervision and monitoring	S	15
Instrument transformers and sensors	Т	37
Wind turbines	W	16
Switchgear	Х	3
Power transformers	Y	4
Further power system equipment	Z	25

* From list compiled by Karlheinz Schwarz, SCC

How configuration works

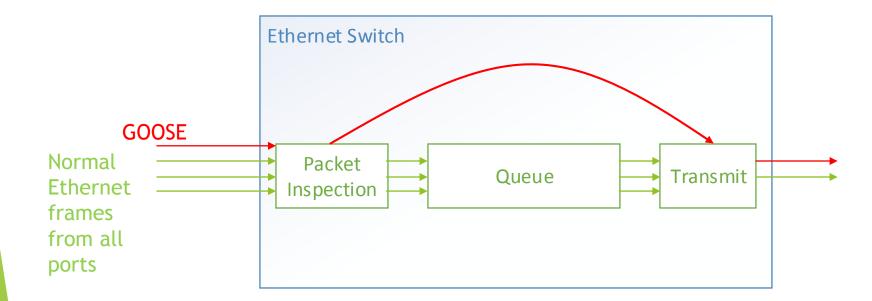

Problem to be solved Configuration

- Each equipment manufacturer has a unique program for their device
- Most equipment manufacturers have multiple programs, i.e. one for each "family" of devices
- Each device is more or less standalone
 - ▶ No electronic means to tie them together
- Each configuration tool uses a proprietary means of data transport and structure
- Result:

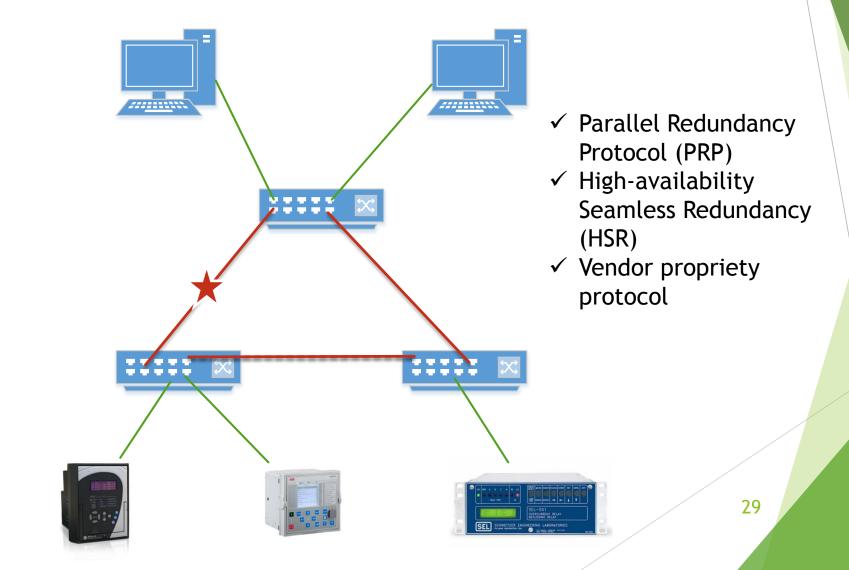
We have to know lots of tools and lots of tool "features"

Substation Configuration Language IEC 61850-6

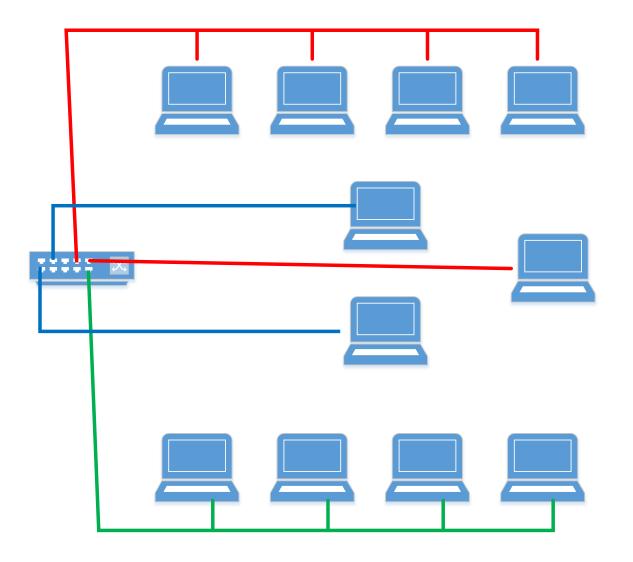
- Based on XML (eXtensible Markup Language)
 - Encoding rules, text, computer readable, tagged data, schemas
- Allows for describing everything in the substation
 - single line diagrams
 - functions in devices
 - much more...
- 61850 defines mandatory and optional parts
- 61850 defines default parameters


Network reliability

...and why it is REALLY important for 61850


Important Features of Managed Switches

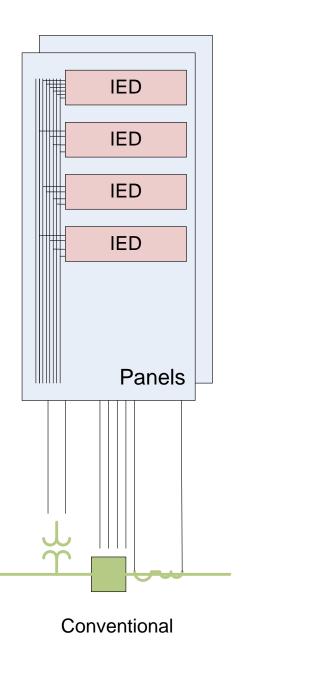
- Backbone of the substation network
 - All data goes through a switch
 - Route Ethernet packets to one or multiple devices
- Buffer packets to/from each port
 - Asynchronous operation = no collisions
 - Mechanism = Store and forward queues
- Virtual local area network (VLAN)
 - ► A subset of ports no routing between VLANs at the switch level
 - Contains broadcast and high-bandwidth apps to this subset
- Redundancy
 - Detect and re-route when a link is broken
- Priority routing
 - ▶ Higher priority, i.e. GOOSE, transmitted before normal traffic


Prioritizing packets

Redundancy

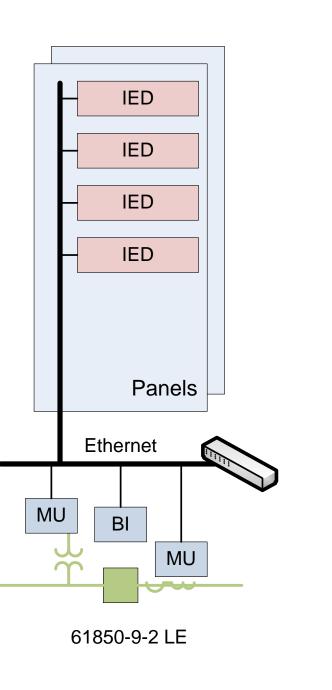
Virtual LANs

- ✓ Limit broadcast domains
- ✓ Security
- ✓ Simplify network design (via multiple switches)

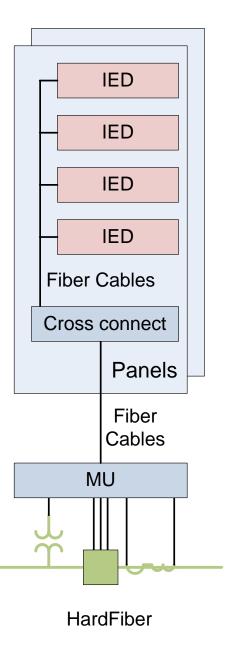

Process Bus

...the final frontier

Purpose of the Process Bus


- Process Bus
 - Purpose: Replace many wires/cables from primary to secondary equipment (relays & other IEDs) with fewer network connections (typically fiber optic)
 - Added flexibility that comes with a digital solution
- Two methods
 - ► IEC 61850-9-2 LE (ABB, Alston, Siemens)
 - ► HardFiber[™] (GE)
- Moves the Analog-to-Digital function from inside the relays to the "process"

Conventional



61850-9-2

- MU = Merging Unit
- ► BI = Binary I/O

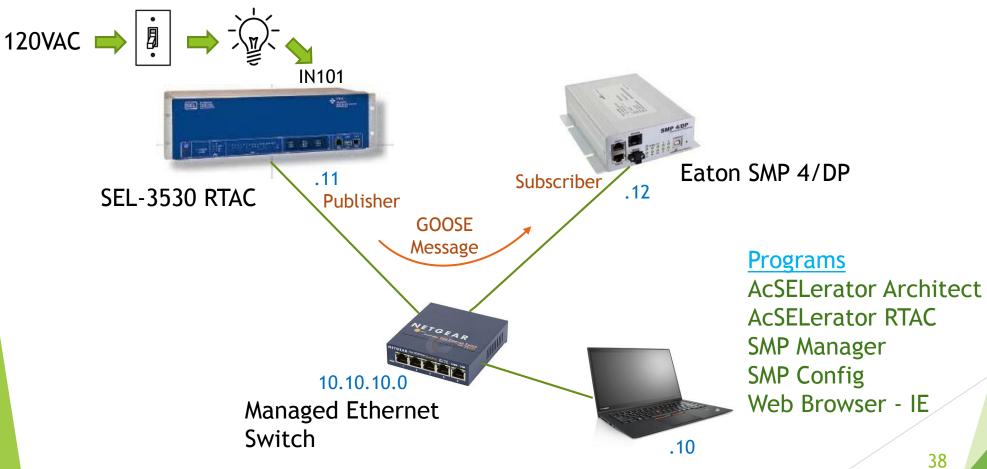
HardFiber™

Summary The Good and the Bad

Good

- Simplified design, i.e. fewer wires
- Faster and more flexible protection schemes
- Standardized configuration

Bad


- Interoperability (as well as interchangeability) is still a work in progress (and may always be)
- Cost
- Maintainability

Summary Where to Start?

- Substation Ethernet opportunity to access data more efficiently and provides a foundation for the future
- Consider: Greenfield? Brownfield? Turnkey vs. self-implement?
- Look into GOOSE messaging fairly simple and interoperable
 - Can add some flexibility and remove "out of control" wiring
- Understand the knowledge requirements
 - Like any new technology requires training, testing, people, etc.
- Press vendors for interoperable adherence to the standards <u>and have</u> <u>them prove it</u>

Demo of GOOSE messaging

Leveraging the high speed network

38

Florida Electric Cooperatives Association The Power of Human Connections®

Q&A

mthesing@pdengineers.com

